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The influence of viscosity on the stability of motion of a liquid tube in the cavity of a stationarily rotating 
horizontal cylinder is considered. An analytical condition of the stability of motion is obtained. The similarity 
criteria of steady motion of the liquid are selected. On the basis of experimental data diagrams of the transition 
boundaries for turbular and nontubular regimes of liquid motion are constructed. 

Regimes of motion of a liquid in the cavity of a cylinder, rotating around the horizontal axis, substantially 

affect technological processes realized by rotating heat pipes [1, 2 ], drying steam drums, and centrifugal casting 

machines. An experimental analysis of the regimes of liquid motion with a low degree of filling of the cavity as applied 

to the hydromechanics of a condensate in drying steam cylinders of paper-making machines is given in [3, 4 ]. The 

problem of determining velocity regimes of tubular motion of an ideal liquid was analytically considered in [5 ]. The 

calculation for the parameters of motion of a viscous liquid tube with a small layer thickness as compared to the 

cylinder radius is numerically presented in [6, 2 ] on the basis of boundary layer theory. The work [7 ] describes 

characteristic regimes of liquid motion, taking account of disturbances, and attempts to generalize and extrapolate 
the results in the form of a two-parameter diagram. 

The present work analytically deals with the influence of viscosity on the stability of tubular motion of a 

liquid. In this case the statement of the problem of [5 ] persists but the liquid is considered viscous. The possibility 

to find the similarity criteria and to obtain a universal diagram, determining the transition boundaries for the tubular 

and nontubular regimes, on the basis of experimental data is also dealt with. 

We will consider a cylinder with radius R with smooth end walls, which uniformly rotates around the 

horizontal axis, perpendicular to the gravitational acceleration g, with the angular velocity w and is partially filled 

with a liquid with the kinematic viscosity factor v. Given a sufficient angular velocity of the cylinder, the liquid in the 
cavity takes the form of a tube of outer radius R and free surface radius cR (0 _< c _ 1) (see Fig. 1). 

The liquid motion is considered in a plane perpendicular to the axis of rotation of the cylinder. A polar system 
of coordinates r and T is introduced; the velocity components are U and V. Then the equation of motion and the 
continuity conditions have the form 
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where p is the pressure; p is the liquid density; t is the time. Surface tension is disregarded. 
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Fig. 1. Calculated scheme. 

Uniform tubular solid rotation in the absence of gravitational forces is taken as undisturbed motion, velocities 

and pressure taking the values 

1 U = O, V = o~r, p : =  ~ pco 2 ( r  2 - -  : R ~ ) .  

Gravitational forces trigger stationary disturbances of the velocity and pressure of the liquid in steady motion. 

Then, after the replacement of ~/= r /R  (c __ r / _  l) taking into account only normal stresses one can rearrange 

U = r V = coR (~ + Vo), 
(2) 

1 
P --= - -  Pc~ z [(~q~ - -  c2) + Po] + PgR~I cos % 

2 

here U0, Vo, and Po are the time-independent disturbances. 
Let , /= c + 6o(~,) on the free surface, where 6o is the dimensionless stationary travel, small as compared to 

C. 

With the disturbances Uo and Vo assumed small as compared to q, and oZV/or 2 disregarded, the equations 

of disturbed motion based on (1) in view of (2) take the form 

OUo 2Vo == 1 Opo + 1 ( OZUo O2Uo 
a~l "- O~ 2 

+ ~1 OU__o 2 8Vo Uo).  
0~I Oq, 

OVo + 2Uo_= 1 Opo 1 (OWo OUo ) 
0q~ 2,l O ,~ -  +- ~ 0r F 2 0r ' 

(3) 

8 O1Uo) -t- oV-----Z-" --:- O. 
O~l c)q~ 

The boundary conditions respectively on the solid wall and the free surface become 

U0 :--- 0 for r I =- 1, 

After substituting 

2c 860 
------- cos % Uo---- ~ for "q:=c. Po -F 2C6o Fr Oqo 

(4)  

60 : A cos % Po = P 01) cos % Uo = Z 01) sin % Vo = ~ (q) cos qo (5) 
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Eqs. (3) with the prescribed ~o can be written as 

1 x - -  2~ = - -  
2 

tg cp 
P'  + --ff~eo (n"X" - -  2Z + nZ' + 2~), 

1 p q  1 . ( 2 z - - ~ ) ,  
2~1 tg ~p Reo 

z + n z ' - - ~ =  o, 

and the boundary  conditions (4) as 

Z = 0  for r l = l ,  

P + 2cA = 
2c 

Fr  

After rearranging (6) and eliminating P, 

X + A = . 0  for  ~1=c .  

where 

a = 

b : := 

rl2ff + mqx' + bx = 0, 

3 Reo tg c 0 -t- 3 tg 2 ~p - -  1 

Re0 tg rp + tg ~ ~p - -  1 

1 

Reo tg (~ 4- tg ~ ~ p -  I 

The solution (8) has the form 

here 

Z = =  A I ~ I  c~ -t-" A-.q ~, 

d = Reo tg ~p -F tg z r 

Reo tg/p + tg = ~p - -  1 

From the first condition of (7) and (9) it follows that 

(6) 

(7) 

(8) 

(9) 

and then 

in view of (6) 

AI = - -  A= = A 
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In view of the third condition of (7) and (10) 

A = - -  A (c a - -  c~) 

and the second condition of (7) 

A= 1{ 
Fr [(~z-- l )c  '~ --([:~ - -  t)c~l Reo tg(P 
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(11) 
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(13) 
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In the upper thickened portion of the tube gravitational and centrifugal forces are in opposition, and the 

necessary condition for the stability of stationarily disturbed motion of the tubular liquid layer is the positive value 

of the radial pressure gradient [5]. According to the numerical and experimental data of [6, 2 ] and our own 

experimental results, the largest thickening of the tube of a real viscous liquid occurs at the upper right of its cross 
section with n / 2  < ~o < 3r (Fig. 1). Therefore on the basis of generalizing the known and obtained experimental data 

the dependence for the angle ~o with the largest thickening of the tube wall, which corresponds to the minimum value 

of the radial pressure gradient on the free surface of the liquid, can be approximately represented as 

fg q? = - -  0,009c-1,5,  

with ~o = arctg(-0.009 c -15) + Jr. 

From the third condition of (2), (11), and (13) it follows that 

(14) 

1 
p -- _ _  p o ; ' R  ~ 
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O l  2 - -  c 2) - -  
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2 cos q~ 

The necessary condition of stability in view of Eq. (15) has the form 

Or I / = T  O~2R2 2 q - -  

[(= - - 1 )  (c, -{- 1) rl <' - -  (~ - -  1) ([5 + 1) rig] ( 
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+ (16) 

This condition is realized on the free surface when in view of (5), (12), and (13) 

~l = c + tSo = 

.... ' " . 1 1 - - ( c  ~ - c ~ ) ,  - -  c + Fr [(~ - -  1 )c  a - -  (f3 - -  1) c a] Re0 tg q~ 

Then on the basis of (16) and (17) after rearrangements the stability condition for the stationary motion of the liquid 

tube can be approximately represented as 

[(cz .... l)c~c ~ ..... (~ .... 1) [5c13] ( Re0 tg ~p ) 
Fr  > cos <____2_P ' , (18) 

[(~, --'l) c~-- (~ - I> "~l ( Re01.tg ~ ') - - ( c ~ - -  c~) 

where Reo = r and ~o is determined from (14). 
As v-,oo (an absolutely nonviscous liquid) Reo--" co and the condition (18), as was shown in [5 ], degenerates 

into 
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Fig. 2. Results of experimental  determination of the stability conditions for 
motion of the liquid tube in comparison with calculated data: 1,2) experimental  
data at R -- 0.075 m respectively for v = 10 -6 m2/sec (water) and v = 10 -3 m2/sec 
(castor oil); 3) calculation from [5], and also from (18) as v--,O (Fr = 3 /c) ;  4) 
calculation from (18) as v-,oo (Fr = 1/c);  5) calculation from (18) at v--  10 -3 
m2/sec and R = 0.075 m. 

3 
Fr  > ~  (19) 

c 

If v-~oo (an absolutely viscous liquid) Reo-,0,  and the condition (18) becomes 

t 
Fr  > .... (20) 

c 

Figure 2 shows the results of experimental determination of the stability conditions in comparison with the 

calculated data. In calculating the curves of limiting stability conditions from (18) in view of (14) the values of co and 

Reo were determined by  a successive approximation, and as a first approximation they were taken from the condition 

of zero viscosity of the liquid: Fr -- 3/c.  The  limiting curve calculated from (18) at v = 10 -6 m2/sec (water) and R = 

0.075 m practically coincides with the line Fr = 3/c.  The  points on the plot correspond to the obtained experimental  

values of angular  velocities, with which the destruction of the liquid tube during a slow decrease in the cylinder 

rotation velocity took place. Steady regimes above the curves correspond to a tubular form of motion, and those below 

- to a nontubular  one. 

The  analysis of Fig. 2 shows good agreement of the results of solving Eq. (18) with the obtained experimental  

data. 

Experimental  investigations were performed on a plant fitted with nine renewable drums with the cavity 

radius range R = 0.01325-0.212 m. To visualize flow, one end wall of the drum was made transparent .  Water  and 

spindle and castor oils with the kinematic viscosity factor respectively 10 -6, 49.10 -6, and 10 -3 m2/sec served as 

working liquids. The  degree of filling of the drum cavity with material ~c (the material volume to cavity volume ratio) 

was realized in the form of ten discrete values and varied within ~c = 0.1-0.95. 

The  angular  velocities of the drum stationary rotation with formation and destruction of the liquid tube in 

steady motion were calculated, the first velocity being determined as the drum slowly accelerated from the quiescent 

state to the transit ion of the nontubular  form of motion to the tubular one and the second - as the velocity of the drum 

with the liquid tube smoothly decreased to the transition of the tubular regime to the nontubular  one. Near ly  500 

points were obtained. Experimental  data for ~c = 0.1 are in good agreement with the results of [3, 4, 6 ]. 

Analysis of the experimental  results has shown that in the given case the similarity criteria of steady motion 

of the liquid will be the Reynolds Re and Froude Fr  numbers on the radial surface of the cylinder cavity as well as 

the degree of filling of the cavity with the liquid ~c: 
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Fig. 3. Comparative diagram of the calculated and experimental determination 
of the transition boundaries for the tubular and nontubular regimes of liquid 
motion at r -- 0.5: 1, 2) calculation respectively from [5] and (18); 3, 4, 5) 
experimental data for the boundary of transition from, respectively, the tubular 

regime to the nontubular one with the cylinder run-out, the nontubular regime 
to the tubular one with acceleration, and the tubular regime to the nontubular 
one and back with run-out and acceleration. 

~0R ~" w2R "r 
R e : : : - - ,  Fr , x . . . . .  , 

g .~R2L 

where ~ is the volume of the liquid in the cylinder cavity; L is the cavity length, the first criterion characterizing 

frictional forces, the second - inertial forces, and the third - the geometric parameters of the motion. 

Figure 3 presents a comparative diagrammatic analysis of the stability conditions of motion of the liquid tube 

from [5 ], the analytical results of this work, and the obtained experimental data. The transition boundaries for the 

tubular and nontubular regimes of liquid motion are plotted in the logarithmic axes Re and Fr for x :  0.5. The portion 

of the diagram above the boundary corresponds to the tubular form of motion and that below - to the nontubular one. 

Inclined dashed lines correspond to the regimes of liquid motion in a cylinder of constant radius, rotating with 

different velocities. At large values of Re the phenomenon of hysteresis emerges - an excess of the cylinder rotation 

velocity in the formation of the tube during its acceleration over the destruction rate of the tube in its run-out [3, 4, 

6, 2 ]. At small Re the rate of tube formation during acceleration and the rate of destruction during run-out are equal 

[6, 2 ], the indicated effects being due to the emergence of secondary circulation flows in the form of a roller on the 

inner surface of the tube. 
The condition (18) obtained in the work in view of (14) corresponds closely to the experimental data for the 

angular rate of destruction of the tube in the run-out of the cylinder. However, this expression becomes incorrect as 

the secondary flows emerge. 
Figure 4 gives universal diagrams of the transition boundaries for the regimes of liquid motion in the cylinder 

constructed on the basis of the obtained experimental data in the logarithmic axes Re and Fr for discrete values of 

x: 0.1; 0.3; 0.5; 0.7, and 0.9. To determine with the aid of the diagrams the angular rotation velocity of the cylinder 

a~ fitting the transition boundary of the regimes, from the two known parameters R and v an inclined straight line, 

analogous to Fig. 3, is constructed for the current values of velocity. From the coordinates of the point of intersection 

of this straight line with the plot, for the corresponding degree of filling, to is calculated. The angular velocity for the 

intermediate values of x can be determined by interpolating. 

Thus, an increase in the liquid viscosity decreases, according to (18) in view of (14), the value of the angular 
rotation velocity of the horizontal cylinder with which the tube loses stability and is destroyed and the liquid motion 

goes over into the nontubular form within the condition range from (19) to (20). The similarity criteria of steady 

motion are the Reynolds and Froude numbers on the cylinder surface as well as the degree of filling of the cavity. 

From the experimental data with allowance made for the similarity criteria one may construct universal diagrams of 
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Fig. 4. Universal diagrams of the transition boundaries for the regimes of liquid 
motion: 1) x=0.1;  2) 0.3; 3) 0.5; 4) 0.7; 5) 0.9. 

the transition boundaries for the regimes of liquid motion, which can be used to calculate velocity regimes of horizontal 
drum machines. 

N O T A T I O N  

r, 90, polar coordinates; g, gravitational acceleration; p, density; v, kinematic viscosity factor; R, radius of 
cylinder; c, ratio of the free surface of liquid tube in the cavity of cylinder to its radius; L, cylinder length; U, V, 
velocity components of liquid; ~o, angular velocity of cylinder; p, pressure; Uo, V0, disturbances of velocity; P0, 
disturbance of pressure; c3o, disturbance of the free surface of liquid tube; A, P, %, ~, variables in equations of disturbed 
motion; a, b, d, A1, A2, A, a, r ,  coefficients in equations of disturbed motion; Re0 -- coc2Ra/v,  Reynolds number on 
the free surface of liquid tube; Re -- coR2/v ,  Reynolds number on the cylinder cavity surface; Fr -- co2R/g, Froude 

number on the cylinder surface; tc = z/jrR2L, degree of filling of cylinder with liquid. 
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